LeetCode 九坤投资专场竞赛
Table of Contents
LeetCode 九坤投资专场竞赛 #
Problem 1 可以读通讯稿的组数 #
题目链接 #
Solution 1 #
如果两个编号 $a, b$ 满足条件 $a + reverse(b) == reverse(a) + b$ , 那么有 $a - reverse(a) == b - reverse(b)$ , 把对称的二元关系转化成一元的性质, 这样用哈希计数即可. 代码如下:
#define ll long long
const ll MOD = 1e9 + 7;
class Solution {
public:
int reverse(int num) {
int res = 0;
int temp = 0;
while (num != 0) {
temp = num % 10;
res = res * 10 + temp;
num /= 10;
}
return res;
}
int numberOfPairs(vector<int>& nums) {
int ans = 0;
unordered_map<int, ll> book;
for (int num: nums) {
book[num - reverse(num)]++;
}
for (auto it: book) {
ans = (ans + (it.second - 1) * (it.second) / 2) % MOD;
}
return ans;
}
};
Problem 2 池塘计数 #
题目链接 #
Solution 1 #
统计池塘数量, 我们用沉岛策略避免重复计算. 代码如下:
const int dirs[8][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
class Solution {
public:
int m, n;
void visit(vector<string>& field, int i, int j) {
field[i][j] = '.'; // 沉岛, 避免重复搜索
for (auto dir: dirs) {
int x = i + dir[0];
int y = j + dir[1];
if (x >= 0 && x < m && y >= 0 && y < n && field[x][y] == 'W') {
visit(field, x, y);
}
}
return;
}
int lakeCount(vector<string>& field) {
m = field.size();
n = field[0].size();
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (field[i][j] == 'W') {
ans++;
visit(field, i, j);
}
}
}
return ans;
}
};
Problem 3 数字默契考验 #
题目链接 #
Solution 1 #
经过若干次 $\times 2$ 和 $\times 3$ 的操作后能够得到相同的数, 说明 $numbers$ 数组中每个元素除了 $2$ 和 $3$ 以外的因子是完全相同的. 我们统计各个元素 $2$ 和 $3$ 的幂次与最高幂次的差之和即可. 代码如下:
#define ll long long
class Solution {
public:
const int TWO = 1 << 30, THREE = 1162261467;
int minOperations(vector<int>& numbers) {
int n = numbers.size();
vector<int> part_2(n, 0), part_3(n, 0);
int base = numbers[0] / __gcd(numbers[0], TWO) / __gcd(numbers[0], THREE);
int max_2 = 0, max_3 = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
part_2[i] = __gcd(numbers[i], TWO);
part_3[i] = __gcd(numbers[i], THREE);
if (numbers[i] / part_2[i] / part_3[i] != base) {
return -1;
}
int cnt_2 = 0, cnt_3 = 0;
while (part_2[i] % 2 == 0) {
part_2[i] /= 2;
cnt_2++;
}
while (part_3[i] % 3 == 0) {
part_3[i] /= 3;
cnt_3++;
}
max_2 = max(max_2, cnt_2);
max_3 = max(max_3, cnt_3);
ans -= cnt_2 + cnt_3;
}
ans += (max_2 + max_3) * n;
return ans;
}
};
Problem 4 筹码游戏 #
题目链接 #
Solution 1 #
由于筹码的地位对称, 我们只需要考虑筹码的数量而不必纠结于具体的分配. 用 $k$ 个单调不减的数字代表当前筹码的状态 $state$ . 考虑到达终点 $nums$ 的状态转移. 每次抽取筹码共有 $k$ 种可能, 每种使得 $state[i] + 1$ 得到一种新的 $state_i$ . 假设有 $m$ 个状态可以到达最终状态, 则有如下状态转移方程: $$ E(state) = \sum_{t = 1}^{m}E(state_{j_t}) \times \frac{1}{kind} + (1 - \frac{m}{kind})\times E(state) + 1 $$ 即 $$ E(state) = \frac{\sum_{t = 1}^{m}E(state_{j_t}) + kind}{m} $$ 使用深度优先搜索来完成递推过程, 利用记忆化搜索减少计算量. 代码如下:
class Solution:
def chipGame(self, nums: List[int], kind: int) -> float:
nums = [0] * (kind - len(nums)) + sorted(nums)
@cache
def getRes(state):
state = list(state)
if state == nums: return 0
sum_E = 0
sum_p = 0
i = 0
for i in range(kind):
cnt = 1
state[i] += 1
new_state = sorted(state)
for x, y in zip(new_state, nums):
if x > y:
break;
else:
sum_E += getRes(tuple(new_state))
sum_p += 1
state[i] -= 1
return (sum_E + kind) / sum_p
return getRes(tuple([0] * kind))