LeetCode-1388 3n 块披萨
Table of Contents
LeetCode-1388 3n 块披萨 #
Solution 1 #
取完某块披萨, 相邻的披萨一定不能再取了, 因此取的元素至少满足不能相邻这一点. 实际上, 从 $3n$ 个元素中取出 $n$ 个不相邻的元素一定能够对应某种披萨的取法. 详细的证明可以参考力扣官方题解. 知晓这一点后利用动态规划即可. 代码如下:
class Solution {
public:
int maxSizeSlices(vector<int>& slices) {
int n = slices.size() / 3;
vector<vector<int>> dp(3 * n, vector<int>(n + 1, 0));
int ans = 0;
for (int i = 0; i < 3 * n; i++) {
for (int j = 1; j <= n; j++) {
if (i >= 2) {
dp[i][j] = max(slices[i] + dp[i - 2][j - 1], dp[i - 1][j]);
}
else if (i == 1) {
dp[i][j] = max(slices[i], dp[i - 1][j]);
}
else {
dp[i][j] = slices[i];
}
}
}
ans = dp[3 * n - 2][n];
dp = vector<vector<int>>(3 * n, vector<int>(n + 1, 0));
for (int i = 1; i < 3 * n; i++) {
for (int j = 1; j <= n; j++) {
if (i >= 2) {
dp[i][j] = max(slices[i] + dp[i - 2][j - 1], dp[i - 1][j]);
}
else if (i == 1) {
dp[i][j] = max(slices[i], dp[i - 1][j]);
}
else {
dp[i][j] = slices[i];
}
}
}
ans = max(ans, dp[3 * n - 1][n]);
return ans;
}
};