LeetCode-2503 矩阵查询可获得的最大分数
Table of Contents
LeetCode-2503 矩阵查询可获得的最大分数 #
Solution 1 #
对于查询 $query[i]$ , 选出所有值 $< query[i]$ 的单元格, 所得分数就是左上角单元格 (如果 $grid[0][0] < query[i]$ )所在的最大联通块的大小. 我们把 $query$ 数组从小到大排序, 同时用一个优先队列维护单元格, 用并查集维护连通块. 遍历 $query$ , 更新状态即可. 代码如下:
class Solution {
public:
typedef pair<int, int> pii;
const int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
vector<int> pa;
vector<int> sz;
void Union(int x, int y) {
x = Find(x);
y = Find(y);
if (x == y) {
return;
}
else if (x < y) {
pa[y] = x;
sz[x] += sz[y];
}
else {
pa[x] = pa[y];
sz[y] += sz[x];
}
}
int Find(int x) {
if (x == pa[x]) {
return x;
}
pa[x] = Find(pa[x]);
return pa[x];
}
vector<int> maxPoints(vector<vector<int>>& grid, vector<int>& queries) {
int m = grid.size();
int n = grid[0].size();
int k = queries.size();
vector<int> ans(k, 0);
pa = vector<int>(m * n + n, 0);
iota(pa.begin(), pa.end(), 0);
sz = vector<int>(m * n + n, 1);
vector<pii> q_id(k);
for (int i = 0; i < k; i++) {
q_id[i] = make_pair(queries[i], i);
}
priority_queue<pii, vector<pii>, greater<pii>> q;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
q.emplace(grid[i][j], i * n + j);
}
}
sort(q_id.begin(), q_id.end());
for (auto [bound, i]: q_id) {
while (!q.empty() && q.top().first < bound) {
auto [val, hash] = q.top();
q.pop();
int x = hash / n;
int y = hash % n;
for (auto dir: dirs) {
int nx = x + dir[0];
int ny = y + dir[1];
if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] < bound) {
Union(hash, nx * n + ny);
}
}
}
ans[i] = (grid[0][0] < bound? sz[0]: 0);
}
return ans;
}
};