LeetCode AutoX 安途智行专场竞赛
Table of Contents
LeetCode AutoX 安途智行专场竞赛 #
Problem 1 网页瀑布流 #
题目链接 #
Solution 1 #
贪心, 用优先队列维护列的高度. 代码如下:
class Solution {
public:
int getLengthOfWaterfallFlow(int num, vector<int>& block) {
priority_queue<int, vector<int>, greater<int>> pq;
int n = block.size();
int ans = 0;
for (int i = 0; i < min(num, n); i++) {
pq.push(block[i]);
}
for (int i = min(num, n); i < n; i++) {
int top = pq.top();
pq.pop();
pq.push(top + block[i]);
}
while (!pq.empty()) {
ans = max(ans, pq.top());
pq.pop();
}
return ans;
}
};
Problem 2 蚂蚁王国的蜂蜜 #
题目链接 #
Solution 1 #
用哈希表维护数据即可.
class Solution {
public:
vector<double> honeyQuotes(vector<vector<int>>& handle) {
vector<double> ans;
int n = 0;
map<int, int> book;
for (auto h: handle) {
int type = h[0];
if (type == 1) {
book[h[1]]++;
n++;
}
else if (type == 2) {
book[h[1]]--;
n--;
if (book[h[1]] == 0) {
book.erase(h[1]);
}
}
else if (type == 3) {
if (n == 0) {
ans.push_back(-1.0);
}
else {
double sum = 0;
for (auto it = book.begin(); it != book.end(); it++) {
sum += (it->first) * (it->second);
}
ans.push_back(sum / n);
}
}
else if (type == 4) {
if (n == 0) {
ans.push_back(-1.0);
}
else {
double sum = 0;
for (auto it = book.begin(); it != book.end(); it++) {
sum += (it->first) * (it->second);
}
sum = sum / n;
double sum2 = 0;
for (auto it = book.begin(); it != book.end(); it++) {
sum2 += (it->first - sum) * (it->first - sum) * (it->second);
}
ans.push_back(sum2 / n);
}
}
}
return ans;
}
};
Problem 3 #
题目链接 #
Solution 1 #
用 $dp[i]$ 记录覆盖 $days[0], …, days[i]$ 行程的最小费用. 考虑第 $i$ 个行程, 对于每一种 $ticket$ , 最优的选择是把 $ticket$ 的右侧与 $days[i]$ 重合以尽可能覆盖前面的行程, 并检查 ticket 往前第一个覆盖不到的 $days[j]$ , 则有 $$ dp[i] = \underset{ticket\in tickets}{min}dp[j] + ticket[1], j = max{k\vert dp[i] + 1 - ticket[0] > dp[k]} $$ 代码如下:
#define ll long long
class Solution {
public:
long long minCostToTravelOnDays(vector<int>& days, vector<vector<int>>& tickets) {
int n = days.size();
vector<ll> dp(n, 1e14);
for (int i = 0; i < n; i++) {
for (auto ticket: tickets) {
int ped = ticket[0];
ll cost = ticket[1];
int j = lower_bound(days.begin(), days.end(), days[i] + 1 - ped) - days.begin();
dp[i] = min(dp[i], (j == 0)? cost: dp[j - 1] + cost);
}
}
return dp[n - 1];
}
};
Problem 4 #
题目链接 #
Solution 1 #
并查集维护.